• ¿ Que es ILS ?

    El sistema de aterrizaje instrumental (o ILS, del inglés: Instrument Landing System) es un sistema de control que permite que un avión sea guiado con precisión durante la aproximación a la pista de aterrizaje y, en algunos casos, a lo largo de la misma.

    Un ILS consiste de dos subsistemas independientes: uno sirve para proporcionar guía lateral y el otro para proporcionar guía vertical.

    Una serie de antenas localizadoras (LOC o localizer), que están situadas normalmente a unos 1000 pies (305 m) del final de la pista y suelen consistir en 8, 14 ó 24 antenas direccionales logo-periódicas.

    El equipo en tierra transmite una portadora comprendida entre los 108.1 MHz y 111.975MHz, modulada al 20% por una señal resultante de sumar dos tonos de 90 Hz y 150 Hz (90+150 Hz). Esta señal se denomina CSB (Carrier Side Band). A su vez, también se transmite una señal con bandas laterales y portadora suprimida modulada con una señal resultante de restar dos tonos de 90 Hz y 150 Hz (90-150 Hz). Esta señal se denomina SBO (Side Band Only).

    En la mayoria de los sistemas localizadores, existe una tercera señal denominada Clearance o CLR, que sirve de 'relleno' para evitar que las aeronaves intercepten falsos nulos y evitar así que se crea el estar interceptando el eje de pista cuando en realidad no se está haciendo. Dicha señal se transmite con 8 Khz de diferencia respecto a la frecuencia de trabajo del localizador.

    Estas tres señales, CSB, SBO y CLR, se distribuyen a las antenas a través del sistema de distribución del localizador. Dicho sistema, meramente pasivo, se compone de fasadores y atenuadores. Su objetivo es entregar a cada antena una proporción adecuada de las tres señales con su potencia y fase adecuada para conformar un diagrama polar.

    Las señales una vez distribuidas y emitidas por las antenas, se suman en el espacio obteniendo una diferencia de modulación ó DDM diferente de las señales de navegación de 90 Hz y 150 Hz en cada punto del espacio. Es lo que se denomina modulación espacial

    Esto produce el efecto que en el lado derecho, la DDM resultante tenga una predominancia de la señal de 90 Hz, en el izquierdo la predominancia de la DDM sea de 150 Hz, atendiendo al sentido de aproximación de la aeronáve y en todo el eje de pista la DDM resultante tenga un valor nulo. Las aeronáves en aproximación, tratarán de buscar el nulo de la DDM lo que conlleva en la realidad a posicionarse en el eje de la pista.

    El receptor embarcado en las aeronáves, suele ser un receptor de VHF superheterodino, el cual recibe y procesa la señal aplicandose la resultante a un medidor diferencial llamado CDI. Cuando la diferencia es cero, la aguja vertical del CDI se posiciona en el centro indicando que la aeronáve esta situada sobre el eje de la pista. Además el CDI dispone de un indicado adicional llamado bandera, el cual sólo se activa para avisar que el nivel de señal que se recibe es demasiado bajo y la medida mostrada en el CDI debe ser ignorada.

    Una antena transmisora de la senda de planeo (G/S, del inglés: Glide Slope o GP: Glide Path) se sitúa a un lado de la zona de la pista donde se produce la toma. La señal G/S se transmite a una frecuencia de entre 328.6 MHz y 335.4 MHz, usando una técnica similar a la del localizador; la señal está situada para marcar una senda de planeo de aproximadamente 3° sobre la horizontal.

    Las frecuencias del localizador y la senda de planeo están emparejadas de manera que sólo se requiere seleccionar una frecuencia para sintonizar ambos receptores. El localizador proporciona una señal de código morse transmitda a 1020 Hz para permitir la identificación. Por ejemplo, en el Aeropuerto Internacional de la Ciudad de México, se transmitiría MEX para la pista 5L. Esto permite saber si el ILS está operando con normalidad o si está correctamente sintonizado. La señal de senda de planeo no transmite ninguna señal de identificación, por lo que se depende del localizador.

    Las señales del localizador y la senda de planeo se muestran en un instrumento de la cabina, llamado Indicador de Desviación de Curso (CDI, del inglés: Course Deviation Indicator), como agujas horizontales y verticales (o un instrumento electrónico que las simule). El piloto controla el avión de manera que las agujas permanezcan centradas en el indicador, pues es entonces cuando el avión sigue la senda de planeo y la dirección correctas. Las señales también pueden pasarse a los sistemas de piloto automático para permitir que éste vuele la aproximación.

    Un ILS estándar se considera de Categoría I, lo que permite aterrizajes con una visibilidad mínima de 2.400 pies (732 m) o 1.800 pies (549 m) en caso de que haya iluminación de la línea central y zonas de toma de la pista y un mínimo de techo de nubes de 200 pies (60 m). Los sistemas más avanzados de Categoría II y Categoría III permiten operaciones en visiblidad de casi cero (sin posibilidad de visión), pero requieren una certificación adicional del avión y la tripulación.

    Las aproximaciones de Categoría II permiten aterrizar con una altura de decisión de 100 pies (30 m) y una visibilidad de tan solo 1.200 pies (366 m).

    La Categoría III la vuela el sistema de aterrizaje automático del aparato, y permite operaciones sin incluso altitudes de decisión y una visibilidad mejor a 700 pies (213 m) —CAT IIIa— o entre 150 (46 m) y 700 pies (213 m) —CAT IIIb—.

    Cada aparato certificado para operaciones CAT III tiene una altitud de decisión y mínimos de visibilidad establecidos, únicos para cada certificación.

    Algunos operadores pueden aterrizar en condiciones cero/cero —CAT IIIc—. Las instalaciones CAT II/III incluyen iluminación de la línea central de la pista y zona de contacto, así como otras ayudas y mejoras.

    ¿ Que es DME ? El equipo telemétrico (DME, del inglés: Distance Measuring Equipment) está reemplazando a las radiobalizas en muchas instalaciones. Proporciona una medición de la distancia hasta la G/S. La frecuencia está comprendida entre 978 y 1213 Mhz de 200 a 400 canales, que se selecciona automáticamente al sintonizar el LOC(Localizador).

    El avión interroga con una secuencia de pares de pulsos separados a 12 microsegundos. El equipo de tierra recibe esta señal y la retrasmite de nuevo con un retardo de 50 microsegundos.

    El equipo del avión calcula el tiempo trascurrido desde que preguntó, le descuenta 50ms, lo divide por dos y lo multiplica por la velocidad de la luz (300 m por microsegundo). Con este dato se calcula la distancia al equipo de tierra.
  • INGRESAR A PLANIFICADOR DE VUELO

    Contamos con hangar virtual para administrar tripulación, rutas, vuelos, aeronaves, administración financiera, estadísticas y texturas

    HUB

    Ciudad de Guatemala, Centro America

    EMAIL

    juanpaguatemala@gmail.com

    TELEFONO

    (502) 41499478

    ADMINISTRADOR

    www.juanpablomata.com